
Project Summary: SQLGrader
Drew Skwiers-Koballa

drew.skwierskoballa@gatech.edu

Abstract—There is an industry desire for job candidates with

stronger knowledge of relational database concepts while grading

projects focused on relational databases in massively open online

courses (MOOCs) is presently not well scalable. SQLGrader, a tool

to automate grading and environment management for relational

databases, was developed with the aim to facilitate grading stu-

dent projects at scale. Successful completion of SQLGrader core

functionality (Skwiers-Koballa, 2021) established a pathway to ex-

pand the coverage of databases in computer science education.

Initial implementation was completed and further improvements

are achievable on the extensible and open source framework.

1 INTRODUCTION

Class sizes are expanding to commonly include 100 or more students in tradi-

tional settings at the undergraduate level for database courses (Stanger, 2018)

and massively open online courses (MOOCs) introduce a new breath of students

to college-level material creating class sizes of several hundred students (Fini,

2009). The use of technological innovations to improve student outcomes and

create efficiencies in grading has grown alongside the growth of MOOCs, with

grading automation becoming commonplace in courses with large enrollments

(Atwood and Singh, 2018). An autograder applies the principles of standardized

rubrics and unit tests to generate student grades and feedback with little to no

human intervention. The use of an autograder can also be extended to improve

student access to feedback while a course project is in progress. In application

programming oriented courses, the use of an autograder improves student learn-

ing opportunities and is often able to address the complexities of a particular

subject’s content (Cheang et al., 2003; Helmick, 2007).

Most curriculum for undergraduate degrees in computer science specify a mini-

mum of a single course focused on databases and for further learning multiple

courses on databases are available at the graduate level (Taipalus and Seppä-

nen, 2020). Introductory courses on databases commonly include both writing

queries (data manipulation language, DML) and creating data schema objects

1



(data definition language, DDL). By covering both DML and DDL, students have

an opportunity to gain a well-rounded understanding of a functional database.

Coupled with other software development concepts, an introductory course on

databases may guide learners through building a basic web or console applica-

tion.

The concepts provided by secondary database courses generally focus on object-

relationships, query performance, and advanced data types. The stronger cases

for success came from demonstrations of industry-backed demand for skill sets

such as big data or advanced data types Dietrich and Chaudhari, 2011; Villa,

2016). Especially in the context of MOOCs, where a larger segment of students

are focused on gaining education with direct impact on industry skills, the con-

nection between content and skills desired in the workplace is paramount.

Ongoing evaluations of SQL code, whether written directly by a developer or

generated by an ORM, have shown that this is generally a silent cost to a project

in that it introduces few bugs but has a significant performance impact (Muse et

al., 2020). Parsing queries with a abstract-syntax-tree is a robust option, allowing

for flexibility in engine specificity and capable of handling large workloads. This

was shown in previous weeks for parsing queries as well as by Nagy and Cleve

(2015). As was noted previously, a positive thread from this research into SQL

development anti-patterns is that the most common items are ubiquitous across

both direct SQL code as well as ORMs, such that intermediate to advanced

database courses would serve students very well in the workforce to be able to

combat these issues no matter the software stack they work with.

Delivering database courses with a suitable number of assignments to develop

student skills in working with relational databases is challenging, especially

with rising class sizes, given the time constraint in providing student feedback.

In courses focused on databases the use of autograders is minimal. When an

autograder is used the content of the course is limited to the capabilities of the

autograder. When an autograder is not used, the content of the course is reduced

to adapt to the expanding class sizes.

1.1 Related Work

Work has begun to develop more robust database autograders, however collab-

orative progress has not been made (Stanger, 2018; Wagner, 2020). Advances in

code analysis techniques for SQL have been significant. Future opportunities

2



for code analysis in the context of a learning environment focused on databases

include incorporation into autograder improvements and introduction as an

in-cycle development tool for students (Eessaar, 2020; Yang et al., 2018). Both

opportunities are pointed towards improving student short-term and long-term

outcomes.

Tools for manipulating SQL queries or schemas are under active development

but often through isolated research teams. Whether the primary goal of the work

is to perform analysis for code smells during the development cycle ((Eessaar,

2020); (Yang et al., 2018); (Emani et al., 2016); (Lyu et al., 2021)) or to assist

in an educational environment ((Wagner, 2020); (Stanger, 2018); (Miao et al.,

2020)), the act of providing feedback on the SQL code in an automated manner

is a unified concept. Introducing this concept more formally in academia both

in student workflows as well as a grading tool can impact its prevalence as a

broadly used professional development practice. A broad use of code analysis

for SQL antipatterns at an industry level would be ubiquitously beneficial but is

not covered by SQLGrader at this time.

In industry, many of the developments in the code analysis space or develop-

ment tooling space are done collaboratively through open source projects. In

these instances, individuals across organizational boundaries are able to build

capabilities greater than the sum of the individual expected output. Tools for

specialized uses are especially popular open development patterns due to its

impact on the functionality and adoption success (Arulraj, 2021; tSQLt, 2021).

2 SQLGRADER FUNCTIONALITY

The implemented system functions as a standalone course assignment manage-

ment tool or as a supplement to existing course management technology (Can-

vas, Moodle, and others) with targeted grading services. The SQLGrader grading

functionality establishes relational database environments for individual assign-

ment questions (items) based on SQL data definition language scripts defined

for the cohesive assignment and the individual item. Multiple specific relational

database types are currently supported by SQLGrader, including Postgres, MS

SQL, and MySQL. Database support and grading algorithms are exposed in

customizable components to enable SQLGrader for further use cases.

Items assessing student submissions for the creation of schema items are directly

3



compared against the provided environment definition. Items assessing SQL

query submissions are evaluated n times, where n is one or greater and populated

from either provided datasets or datasets generated by SQLGrader upon request.

While custom datasets provided by an instructor craft the grading results, the

generated datasets show promise in detecting common query mistakes and open

the door for assessing additional attributes of a student’s submission such as

query performance on large datasets.

Figure 1—SQLGrader web interface

Management of SQLGrader is provided foremost through a web-based user in-

terface while secondary HTTP and CLI APIs are exposed. Only SQL scripts are

required to create one or more database environments, eliminating the require-

ment to administer databases in the course of grading.

2.1 Architecture

SQLGrader is self-contained in a docker-in-docker architecture, where a single

container is managed by the host container runtime and starts its own container

runtime. The inner container runtime orchestrates the web-based user interface

and all database types requested by SQLGrader over the course of operation,

as seen in figure 2. Host software requirements are minimal, where the only

software requirement is support of a container runtime where the prebuilt SQL-

Grader image is retrieved and started. The evolving CPU architecture landscape

is considered and images are available for both AMD64 and ARM64 architec-

tures, where the primary selected relational database types provide supported

4



images for both architectures.

Figure 2—Architecture diagram

User-facing infrastructure is minimized in this architecture while flexibility is

maintained to dynamically scale components. While the SQLGrader application

can be run from a local workstation, the ubiquity of the containerd runtime

presents opportunities to independently host an instance from a cloud or local

datacenter.

A prime benefit of the flexibility of the docker-in-docker architecture is support

for assessing multiple database types without fundamental changes. Because the

database engines are setup and removed on-demand, a singular SQLGrader in-

stance can assess assignments for Postgres, MS SQL, and MySQL synchronously.

2.2 Schema Grading

While ANSI standardization of databases does not enforce strict syntax inter-

changability, the use of INFORMATION SCHEMA tables by ANSI-compliant

database systems provides a suitably uniform surface area to collect information

about the schema-based structures in a database (PostgresSQL, 2021; Microsoft,

2021; Oracle, 2021). Queries on INFORMATION SCHEMA are used by SQL-

Grader to describe the submitted schema model in memory for comparison with

the assignment item’s correct schema.

Syntactic differences between database types inform a variation on the same

query for each engine. For example, the syntax for data type casting in Postgres

5



is column::text while in MS SQL it is try_cast(column as varchar(5). While

the query input varies, the columns output is consistent across such that the same

comparison and grading algorithm can be used for any ANSI-compliant database

type.

2.3 Query Grading

Determining query equivalence can be accomplished through algorithmic means

with success, as shown in Chandra et al. (2019). SQLGrader does not incorpo-

rate those approaches and instead establishes query equivalence through query

results comparison over a number of datasets. The datasets can be provided by

the user or generated by SQLGrader, with a combination of both options as the

most efficient approach to

Figure 3—Assignment item assessment environment setup

Hardware efficiency is maximized by dynamically creating container images

for the database environment specified for each assignment item, reducing the

database engine executions for establishing the baseline environment to a single

time regardless of the number of student submissions. The process is demon-

strated in figure 3. Large and realistic datasets are readily handled through the

container image capture process, as dataset duplication is file IO during container

6



creation and removal without the overhead of database engine operations.

3 DISCUSSION

SQLGrader is the only public tool for automating grading of both query and

schema objects with generated datasets and support for multiple database types.

Selected comparative tools are summarized in table 1. The foundational imple-

mentation provides distinctive functionality beyond currently available solutions

and presents a pathway to additional capabilities through extensible design

and a welcoming open source presence. Beyond capabilities as a autograder,

SQLGrader presents a unique approach to managing connectivity to multiple

databases of different types with managed connections and environment initial-

ization.

Table 1—Database assessment tool summary

Project Grade Queries Grade Schema

Objects

DB

types

Code

avail.

Further

adop-

tion

SQLFE (Wagner,

2020)

Against single

instructor-provided

dataset

1 Yes None

XData (Chandra

et al., 2019)

Generates datasets to test

based on abstract syntax

tree

1 Yes None

LearnSQL (Abelló

et al., 2016)

Requires instructor

interaction

Extensive support,

non-automated

1 No None

CS121 Tool (Gong,

2015)

Tables and columns 1 Yes None

SQL Schema

Assessment

(Stanger, 2018)

Tables, columns,

primary and foreign

keys

1 No None

SQLGrader

(Skwiers-Koballa,

2021)

Against one or more

instructor or randomly

generated datasets

Tables, columns,

and foreign keys

3 Yes To be

deter-

mined

3.1 Extensibility

When designing SQLGrader, architectural decisions were deliberately made to

promote ease of code customization and extensibility. By design, it is not expected

7



that a user would need to understand a significant portion of the SQLGrader

code base to modify a specific behavior to their need.

For example, the comparison of schema objects is done on a case-insensitive

basis by default. This functionality is surfaced in an API component for schema

grading interactions. While customizations can be implemented in a live SQL-

Grader instance, it is recommended to directly build a container image to pre-

serve changes.

SQLGrader system data is extensibly accessed in multiple interfaces. The default

Django admin interface is secured and accessible by the environment administra-

tor. Certain objects expected to be present in large volume, such as students, can

be directly imported in the SQLGrader web interface from a comma separated

value file. All system data can be exported through customizable reports in a

complete reporting portal in SQLGrader.

3.2 Open Source

The distinction between extensibility and an open code base is blurry but the

significance of an open source project is not consumed by extensibility. Funda-

mentally, code being publicly available and permissively licensed constitutes

open source. The health of open source projects hinges on much more than a

code base and requires documentation for functionality and development.

A network of dependencies forms between open source projects, encouraging

developers to engage at the level where they are comfortable and in a subject

area where they have interest. SQLGrader is build in an open source language

(Python) on open source frameworks (Django, Flask) and deploys on an open

source runtime (containerd). Additional smaller open source components are

incorporated to enhance specific areas of functionality of SQLGrader, including

the data generation feature.

Opening the SQLGrader project to additional developers is accomplished through

contributing guidelines, developer documentation, and development environ-

ment images. Departure from common collaborative antipatterns seen in edu-

cational technology is intentional to improve the cumulative outcome from this

project, consistent with the model described by Khatri et al. (2016).

The results from the open source structures around SQLGrader is a developer

with minimal knowledge of any related technologies can participate in a mini-

8



Table 2—Collaborative focus on open source in SQLGrader com-

pared to common antipatterns of open code observed.

Collaboration Barrier SQLGrader Antipatterns

Code access pull git repository download code in zip

Getting started with

development

attach VS Code IDE to

preconfigured environment

manually install prerequisites

Development

documentation

visible code history, open

documentation

static documentation website

Communication unified code and

communication platform

email, none specified

mal number of actions and test the entire SQLGrader application locally. Users

of SQLGrader benefit from the short cycle for introducing improvements from

open source contributors back into the project, which is amplified by its use of

prevalent technologies and availability on a popular site (GitHub).

3.3 Limitations

The grading capabilities of SQLGrader can be further expanded to cover table

indexes, query performance, stored procedures, and other database components.

Currently the implementation is foundational and leaves opportunity for expan-

sion.

Deployment of SQLGrader to scaling instances in Kubernetes clusters is not

described and it should be considered a singular node application for use by a

single instructor or instructional team at a time.

3.4 Future Work

The focus of future work is on improving the capabilities of the query and

schema assessment and adding surfaces for directly interacting with assessment

and managed development database containers. Inspired by the robust query

correctness capabilities of Chandra et al. (2019), the query assessment capability

of SQLGrader can be expanded to shape the generated datasets based on static

values found in the correct query script. To expand the impact of SQLGrader,

the query assessment capabilities can be expanded to also report on query per-

formance based on query plan operators and data access statistics.

Surfaces for interacting with the assessment database container instances would

9



allow for further customization by instructors to augment the implemented as-

sessment capabilities with changes specific to their curriculum. In alignment with

the difficulties described by Randolph (2003) for students and instructors alike

in setting up database environments, SQLGrader can expose managed database

container instances for course development purposes.

While SQLGrader already demonstrates unique capabilities in the database au-

tograder landscape, these proposed improvements tightly align with difficulties

encountered in database education. In addition to the mentioned intentions, fu-

ture work will be shaped by user feedback and requests submitted at the code

repository. Open source mechanisms for managing future work are discussed in

appendix 6.2.

4 CONCLUSION

The SQLGrader tool provides an interface for automating grading for one or

more database courses and supports best practices of database education, includ-

ing realistic dataset sizes and multiple ANSI-standard database types. With a

combination of both query and schema object grading capabilities, SQLGrader

is capable of providing autograder capabilities for the foundational database

concepts common in database education (Taipalus and Seppänen, 2020) and

can combat the reduction in student outcomes by creating efficiencies in the

instructor grading workload. As described by Wolff (2001), students benefit from

exposure to multiple database types to deepen their understanding of SQL syn-

tax and the differing strengths of the alternative implementations.

In following published best practices for the long-term success of innovation in

educational (Taylor et al., 2019) and with open source software (Eghbal, 2020),

SQLGrader will continue to gain distinctive functionality proven advantageous

to anyone instructing a database course. The most significant characteristic de-

parture between SQLGrader and existing database assessment tools is the focus

on reaching multiple institutions by supporting adoption and encouraging those

who might otherwise start anew to collaborate on the tool.

5 REFERENCES

[1] Abelló, Alberto, Burgués, Xavier, Casany, M.J., Martín, Carme, Quer, Carme,

Rodríguez, M., Romero, Oscar, and Urpí, Toni (June 2016). “A Software Tool

10



for E-Assessment of Relational Database Skills”. In: International Journal of
Engineering Education.

[2] Arulraj, Joy (Nov. 2021). jarulraj/sqlcheck. url: https : / / github . com /

jarulraj/sqlcheck.

[3] Atwood, Sara A. and Singh, Arjun (June 2018). “Improved Pedagogy En-

abled by Assessment Using Gradescope”. In: url: https://peer.asee.

org/improved-pedagogy-enabled-by-assessment-using-gradescope.

[4] Chandra, Bikash, Banerjee, Ananyo, Hazra, Udbhas, Joseph, Mathew, and

Sudarshan, S. (Apr. 2019). “Automated Grading of SQL Queries”. In: 2019
IEEE 35th International Conference on Data Engineering (ICDE), pp. 1630–1633.

doi: 10.1109/ICDE.2019.00159.

[5] Cheang, Brenda, Kurnia, Andy, Lim, Andrew, and Oon, Wee-Chong (Sept.

2003). “On automated grading of programming assignments in an aca-

demic institution”. In: Computers and Education 41.2, pp. 121–131. issn:

0360-1315. doi: 10.1016/S0360-1315(03)00030-7.

[6] Dietrich, Suzanne W. and Chaudhari, Mahesh (Mar. 2011). “LINQ ROX!

integrating LINQ into the database curriculum”. In: Proceedings of the 42nd
ACM technical symposium on Computer science education. SIGCSE ’11. Associ-

ation for Computing Machinery, pp. 293–298. isbn: 978-1-4503-0500-6. doi:

10.1145/1953163.1953251. url: https://doi.org/10.1145/1953163.

1953251.

[7] Eessaar, Erki (2020). “Automating Detection of Occurrences of PostgreSQL

Database Design Problems”. In: Databases and Information Systems. Ed. by

Tarmo Robal, Hele-Mai Haav, Jaan Penjam, and Raimundas Matulevičius.

Communications in Computer and Information Science. Springer Interna-

tional Publishing, pp. 176–189. isbn: 978-3-030-57672-1. doi: 10.1007/978-

3-030-57672-1_14.

[8] Eghbal, Nadia (Aug. 2020). Working in Public: The Making and Maintenance
of Open Source Software. Stripe Press.

[9] Emani, K. Venkatesh, Ramachandra, Karthik, Bhattacharya, Subhro, and

Sudarshan, S. (June 2016). “Extracting Equivalent SQL from Imperative

Code in Database Applications”. In: Proceedings of the 2016 International
Conference on Management of Data. SIGMOD ’16. Association for Computing

Machinery, pp. 1781–1796. isbn: 978-1-4503-3531-7. doi: 10.1145/2882903.

2882926. url: https://doi.org/10.1145/2882903.2882926.

11

https://github.com/jarulraj/sqlcheck
https://github.com/jarulraj/sqlcheck
https://peer.asee.org/improved-pedagogy-enabled-by-assessment-using-gradescope
https://peer.asee.org/improved-pedagogy-enabled-by-assessment-using-gradescope
https://doi.org/10.1109/ICDE.2019.00159
https://doi.org/10.1016/S0360-1315(03)00030-7
https://doi.org/10.1145/1953163.1953251
https://doi.org/10.1145/1953163.1953251
https://doi.org/10.1145/1953163.1953251
https://doi.org/10.1007/978-3-030-57672-1_14
https://doi.org/10.1007/978-3-030-57672-1_14
https://doi.org/10.1145/2882903.2882926
https://doi.org/10.1145/2882903.2882926
https://doi.org/10.1145/2882903.2882926


[10] Fini, Antonio (Nov. 2009). “The Technological Dimension of a Massive

Open Online Course: The Case of the CCK08 Course Tools”. In: Interna-
tional Review of Research in Open and Distance Learning 10. doi: 10.19173/

irrodl.v10i5.643.

[11] Gong, Angela (Oct. 2015). CS 121 Automation Tool. url: https://github.

com/anjoola/cs12x-automate.

[12] Helmick, Michael T. (June 2007). “Interface-based programming assign-

ments and automatic grading of java programs”. In: Proceedings of the 12th
annual SIGCSE conference on Innovation and technology in computer science
education. ITiCSE ’07. Association for Computing Machinery, pp. 63–67.

isbn: 978-1-59593-610-3. doi: 10 . 1145 / 1268784 . 1268805. url: https :

//doi.org/10.1145/1268784.1268805.

[13] Khatri, Raina, Henderson, Charles, Cole, Renée, Froyd, Jeffrey E., Friedrich-

sen, Debra, and Stanford, Courtney (Feb. 2016). “Designing for sustained

adoption: A model of developing educational innovations for successful

propagation”. In: Physical Review Physics Education Research 12.1, p. 010112.

doi: 10.1103/PhysRevPhysEducRes.12.010112.

[14] Lyu, Yingjun, Volokh, Sasha, Halfond, William G. J., and Tripp, Omer (July

2021). “SAND: a static analysis approach for detecting SQL antipatterns”.

In: Proceedings of the 30th ACM SIGSOFT International Symposium on Software
Testing and Analysis. ISSTA 2021. Association for Computing Machinery,

pp. 270–282. isbn: 978-1-4503-8459-9. doi: 10.1145/3460319.3464818. url:

https://doi.org/10.1145/3460319.3464818.

[15] Miao, Zhengjie, Chen, Tiangang, Bendeck, lexander, Day, Kevin, Roy, Sudeepa,

and Yang, Jun (Aug. 2020). “I-Rex: an interactive relational query explainer

for SQL”. In: Proceedings of the VLDB Endowment 13.12, pp. 2997–3000. issn:

2150-8097. doi: 10.14778/3415478.3415528.

[16] Microsoft (Jan. 2021). System Information Schema Views (Transact-SQL) - SQL
Server. url: https://docs.microsoft.com/en- us/sql/relational-

databases/system-information-schema-views/system-information-

schema-views-transact-sql.

[17] Muse, Biruk Asmare, Rahman, Mohammad Masudur, Nagy, Csaba, Cleve,

Anthony, Khomh, Foutse, and Antoniol, Giuliano (June 2020). “On the

Prevalence, Impact, and Evolution of SQL Code Smells in Data-Intensive

Systems”. In: Proceedings of the 17th International Conference on Mining Soft-
ware Repositories. MSR ’20. Association for Computing Machinery, pp. 327–

12

https://doi.org/10.19173/irrodl.v10i5.643
https://doi.org/10.19173/irrodl.v10i5.643
https://github.com/anjoola/cs12x-automate
https://github.com/anjoola/cs12x-automate
https://doi.org/10.1145/1268784.1268805
https://doi.org/10.1145/1268784.1268805
https://doi.org/10.1145/1268784.1268805
https://doi.org/10.1103/PhysRevPhysEducRes.12.010112
https://doi.org/10.1145/3460319.3464818
https://doi.org/10.1145/3460319.3464818
https://doi.org/10.14778/3415478.3415528
https://docs.microsoft.com/en-us/sql/relational-databases/system-information-schema-views/system-information-schema-views-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-information-schema-views/system-information-schema-views-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-information-schema-views/system-information-schema-views-transact-sql


338. isbn: 978-1-4503-7517-7. doi: 10.1145/3379597.3387467. url: https:

//doi.org/10.1145/3379597.3387467.

[18] Nagy, Csaba and Cleve, Anthony (Sept. 2015). “Mining Stack Overflow

for discovering error patterns in SQL queries”. In: 2015 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE, pp. 516–

520. isbn: 978-1-4673-7532-0. doi: 10 . 1109 / ICSM . 2015 . 7332505. url:

http://ieeexplore.ieee.org/document/7332505/.

[19] Oracle (2021). MySQL 8.0 Reference Manual: 26 INFORMATION SCHEMA
Tables. url: https://dev.mysql.com/doc/refman/8.0/en/information-

schema.html.

[20] PostgresSQL (Nov. 2021). Chapter 37. The Information Schema. url: https:

//www.postgresql.org/docs/14/information-schema.html.

[21] Randolph, Gary B. (Oct. 2003). “The forest and the trees: using oracle and

SQL server together to teach ANSI-standard SQL”. In: Proceedings of the
4th conference on Information technology curriculum. CITC4 ’03. Association

for Computing Machinery, pp. 234–236. isbn: 978-1-58113-770-5. doi: 10.

1145/947121.947174. url: https://doi.org/10.1145/947121.947174.

[22] Skwiers-Koballa, Drew (Dec. 2021). SQLGrader. SQLgrader. url: https:

//github.com/robertdroptablestudents/sqlgrader.

[23] Stanger, Nigel (2018). “Semi-Automated Assessment of SQL Schemas via

Database Unit Testing”. In: p. 10.

[24] Taipalus, Toni and Seppänen, Ville (Aug. 2020). “SQL Education: A System-

atic Mapping Study and Future Research Agenda”. In: ACM Transactions
on Computing Education 20.3, 20:1–20:33. doi: 10.1145/3398377.

[25] Taylor, Cynthia, Spacco, Jaime, Bunde, David, Butler, Zack, Bort, Heather,

Hovey, Christopher, Maiorana, Francesco, and Zeume, Thomas (Feb. 2019).

“Propagating Educational Innovations”. In: pp. 167–168. doi: 10.1145/

3287324.3287526.

[26] tSQLt (Dec. 2021). tSQLt.org. url: https://github.com/tSQLt- org/

tSQLt.

[27] Villa, Adam H. (Jan. 2016). “Big data: motivating the development of an

advanced database systems course”. In: Journal of Computing Sciences in
Colleges 31.3, pp. 119–128. issn: 1937-4771.

[28] Wagner, Paul J. (Feb. 2020). “The SQL File Evaluation (SQLFE) Tool: A

Flexible and Extendible System for Evaluation of SQL Queries”. In: Pro-
ceedings of the 51st ACM Technical Symposium on Computer Science Education.

13

https://doi.org/10.1145/3379597.3387467
https://doi.org/10.1145/3379597.3387467
https://doi.org/10.1145/3379597.3387467
https://doi.org/10.1109/ICSM.2015.7332505
http://ieeexplore.ieee.org/document/7332505/
https://dev.mysql.com/doc/refman/8.0/en/information-schema.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema.html
https://www.postgresql.org/docs/14/information-schema.html
https://www.postgresql.org/docs/14/information-schema.html
https://doi.org/10.1145/947121.947174
https://doi.org/10.1145/947121.947174
https://doi.org/10.1145/947121.947174
https://github.com/robertdroptablestudents/sqlgrader
https://github.com/robertdroptablestudents/sqlgrader
https://doi.org/10.1145/3398377
https://doi.org/10.1145/3287324.3287526
https://doi.org/10.1145/3287324.3287526
https://github.com/tSQLt-org/tSQLt
https://github.com/tSQLt-org/tSQLt


SIGCSE ’20. Association for Computing Machinery, p. 1334. isbn: 978-1-

4503-6793-6. doi: 10.1145/3328778.3372599. url: https://doi.org/10.

1145/3328778.3372599.

[29] Wolff, David A. (Dec. 2001). “MySQL, PostgreSQL, and PHP: open source

technologies for a database management course”. In: Journal of Computing
Sciences in Colleges 17.2, pp. 91–92. issn: 1937-4771.

[30] Yang, Junwen, Yan, Cong, Subramaniam, Pranav, Lu, Shan, and Cheung,

Alvin (Oct. 2018). “PowerStation: automatically detecting and fixing inef-

ficiencies of database-backed web applications in IDE”. In: Proceedings of
the 2018 26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. ACM, pp. 884–

887. isbn: 978-1-4503-5573-5. doi: 10.1145/3236024.3264589. url: https:

//dl.acm.org/doi/10.1145/3236024.3264589.

6 APPENDICES

6.1 SQLGrader associated materials

1. https://robertdroptablestudents.github.io/: project documentation

2. https://github.com/robertdroptablestudents/sqlgrader: code

6.2 SQLGrader Development Plan

Future development is planned based on open issues (features, bugs) at the

SQLGrader code repository. A snapshot of the current project board is in figure

4. Issues are categorized by priority and type with high-visibility labels.

Contributions to the project from additional developers are welcome. Code is

added via "pull request" to incorporate line-by-line changes to existing or new

files.

14

https://doi.org/10.1145/3328778.3372599
https://doi.org/10.1145/3328778.3372599
https://doi.org/10.1145/3328778.3372599
https://doi.org/10.1145/3236024.3264589
https://dl.acm.org/doi/10.1145/3236024.3264589
https://dl.acm.org/doi/10.1145/3236024.3264589
https://robertdroptablestudents.github.io/
https://github.com/robertdroptablestudents/sqlgrader


Figure 4—SQLGrader project planning board, December 2021

15


	Introduction
	Related Work

	SQLGrader Functionality
	Architecture
	Schema Grading
	Query Grading

	Discussion
	Extensibility
	Open Source
	Limitations
	Future Work

	Conclusion
	References
	Appendices
	SQLGrader associated materials
	SQLGrader Development Plan


